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Complexes between copper reagents and double-bonds have
been proposed as intermediates in a number of synthetically
important reactions.[1, 2] Many h2-complexes between organo-
cuprates and carbon–carbon double-bonds, which are inter-
mediates in 1,4-addition reactions of a,b-unsaturated carbon-
yl compounds, have been observed by using NMR spectros-
copy.[3] Moreover, h2-O,C-complexes between organocopper
compounds and carbon–oxygen double-bonds have been
proposed as intermediates in 1,2-additions to carbonyl com-
pounds,[1] for example, copper-catalyzed asymmetric induc-
tion reactions.[4] Carbophilic additions to thiocarbonyl com-
pounds, mediated by organocuprates, have been explained in
terms of h2-S,C-complexes of carbon–sulfur double-bonds.[5]

However, there has been no report of an X-ray structure for
any of these p-complexes.

Therefore, we applied our rapid-injection techniques,
which were previously used to prepare several important
intermediates,[5–8] to screen a number of typical aldehydes and
ketones for complex formation with Me2CuLi,[9] and we
discovered such a species with unusual stability, which has
allowed us to prepare it on a larger scale and grow high-
quality crystals (see the Supporting Information). We now
report the first X-ray crystal structure[10] of a cuprate–
carbonyl p-complex, 1 (Scheme 1 and Figure 1).

The most significant feature of 1 is the doubly complexed
carbonyl group involving the relatively rare side-on p-
bonding to the copper atom, as well as the more common
end-on s-bonding to the lithium atom via a lone pair.[11] The
Mea-Cu-Meb angle in 1 (C1-Cu-C2 1048) is considerably
distorted from the linear arrangement in [Li([12]crown-

4)2]
+[MeCuMe]� (C-Cu-C 1808, Cu�C 1.935(8) �).[12] The

Mea
�Cu bond is significantly longer than the Meb

�Cu bond
(see Figure 1 caption). The carbon–oxygen bond in 1 (C3�O1
1.326(2) �) is significantly longer than in fluorenone
(1.220(2) �).[13] A Ni0 h2-O,C-complex of fluorenone has the
same carbon–oxygen bond length (1.326(5) �) as 1.[14]

Another salient feature of 1 is the essentially coplanar
arrangement of the two methyl groups and the three atoms of
the copper–carbonyl bond. Specifically, C1 is �0.068 � from
the O1-Cu-C3 plane and C2 is 0.047 � from it. This geometry
represents an approximately 28 clockwise twist of the C1�C2
axis relative to the O1�C3 bond. Therefore, dialkyl cuprate
complexes of double-bonds can be described as pseudo
square-planar, which was originally proposed on the basis of
NMR spectroscopy.[7, 8]

Also noteworthy is the approximately tetrahedral lithium
atom, bonded to the cuprated carbonyl group as well as three
tetrahydrofuran (THF) ligands. The former lithium–oxygen
bond length is significantly less than the latter bond lengths
(see Figure 1 caption). Lithium methyl(di-tert-butylphosphi-
do)cuprate(I)[15] and lithium methyl(phenylthio)cuprate(I)[16]

also have structures in which a lone pair of electrons is
donated from a heteroatom to a (THF)3Li+ moiety in the solid
state; they can be considered contact ion pairs.[2]

Rapid-injection NMR involves impelling a substrate so-
lution from a capillary tube into a reagent solution in
a spinning NMR tube, mixing them in a fraction of a second
in the spectrometer probe at a controlled temperature.[17]

Thus, 1 was first prepared by injecting a solution of
fluorenone (60 mL, 0.5m) in [D8]THF into a solution of
Me2CuLi·LiI (30 mmol/420 mL) in [D8]THF/[D6]benzene (7:1)
at �100 8C. New peaks appeared at d =�0.66 and �1.54 ppm

Scheme 1. Preparation of Me2CuLi–fluorenone p-complex 1.

Figure 1. ORTEP representation of 1 (ellipsoids set at 50% probability,
hydrogen atoms omitted for clarity). Selected bond distances [�]: Cu–
C1 1.957(2), Cu–C2 1.934(1), Cu–C3 1.977(1), C3–O1 1.326(2), Cu–O1
1.958(1), Li–O1 1.864(3), Li–O2 1.958(3), Li–O3 1.915(3), Li–O4
1.960(3).
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for the methyl groups in the 1H NMR spectrum of 1 (Figure 2,
> 95% conversion after 0.5 h). The corresponding peaks in
the 13C NMR spectrum appeared at d =�8.40 and 6.04 ppm.
The 13C resonance for the carbonyl carbon moved dramati-
cally upfield from d = 193.87 ppm in fluorenone to d =

99.94 ppm in 1.

A heteronuclear multiple bond correlation plot (HMBC,
Figure 3, left) has a cross-peak (lower left quadrant) between
the downfield methyl hydrogen atoms (d =�0.66 ppm),
which are assigned to Mea, and the carbonyl carbon (d =

99.94 ppm), which is trans to it. Trans coupling across
copper is typically larger than cis.[5–9]

A heteronuclear multiple quantum coherence plot
(HMQC, Figure 3, right) has a cross-peak (lower right
quadrant) between the upfield methyl hydrogen atoms (d =

�1.54 ppm) and the downfield methyl carbon (d = 6.04 ppm),
which are assigned to Meb. It is highly unusual for the
1H NMR shift of Meb to be the upfield signal.[8, 9]

A possible explanation for the anomalous upfield shift of
Meb is shielding by an aromatic ring current, owing to the
position of this methyl group vis-a-vis the central 5-membered
ring (Figure 1). This aromaticity requires a cyclopentadienyl
anion, which in turn requires the transfer of electron density
from the dimethylcuprate moiety to the cyclopentadiene
substructure, and it implies a significant degree of CuIII

character, as proposed by Nakamura et al.[1]

Complex 1 was stable indefinitely at �100 8C, but
decomposed at a significant rate upon warming to �10 8C
(t1/2 = 30 min) to afford a 9:1 mixture of 1,2-adduct and
ethane, the two possible reductive elimination products.
While they did not observe ethane from the reaction of
Me2CuLi·LiI with fluorenone, House et al. reported reduction
products and the 1,2-adduct.[18]

To recapitulate, fluorenone formed a relatively stable
cuprate–carbonyl p-complex 1 with Me2CuLi, which allowed
us to obtain the first X-ray structure of a cuprate–double-
bond complex. This result supports theoretical calculations,
and most importantly, establishes that such complexes are
viable intermediates.
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d =�9.16 ppm, compare with Figure 2; these 2D NMR plots were
from different samples).
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