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Complexes between copper reagents and double-bonds have
been proposed as intermediates in a number of synthetically
important reactions.?’ Many n’-complexes between organo-
cuprates and carbon—carbon double-bonds, which are inter-
mediates in 1,4-addition reactions of a,f3-unsaturated carbon-
yl compounds, have been observed by using NMR spectros-
copy.”! Moreover, 1>-0,C-complexes between organocopper
compounds and carbon-oxygen double-bonds have been
proposed as intermediates in 1,2-additions to carbonyl com-
pounds,!! for example, copper-catalyzed asymmetric induc-
tion reactions.”! Carbophilic additions to thiocarbonyl com-
pounds, mediated by organocuprates, have been explained in
terms of 1’-S,C-complexes of carbon-sulfur double-bonds.”!
However, there has been no report of an X-ray structure for
any of these m-complexes.

Therefore, we applied our rapid-injection techniques,
which were previously used to prepare several important
intermediates,*® to screen a number of typical aldehydes and
ketones for complex formation with Me,CuLi,®! and we
discovered such a species with unusual stability, which has
allowed us to prepare it on a larger scale and grow high-
quality crystals (see the Supporting Information). We now
report the first X-ray crystal structurel'” of a cuprate—
carbonyl w-complex, 1 (Scheme 1 and Figure 1).
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Scheme 1. Preparation of Me,CuLi—fluorenone mt-complex 1.

The most significant feature of 1 is the doubly complexed
carbonyl group involving the relatively rare side-on -
bonding to the copper atom, as well as the more common
end-on o-bonding to the lithium atom via a lone pair.""! The
Me,-Cu-Me; angle in 1 (C1-Cu-C2 104°) is considerably
distorted from the linear arrangement in [Li([12]crown-
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Figure 1. ORTEP representation of 1 (ellipsoids set at 50% probability,
hydrogen atoms omitted for clarity). Selected bond distances [A]: Cu-
C11.957(2), Cu-C2 1.934(1), Cu—C3 1.977(1), C3-O1 1.326(2), Cu-O1
1.958(1), Li~O1 1.864(3), Li-02 1.958(3), Li~0O3 1.915(3), Li—O4
1.960(3).

4),]'[MeCuMe]~ (C-Cu-C 180°, Cu—C 1.935(8) A)."” The
Me,—Cu bond is significantly longer than the Meg—Cu bond
(see Figure 1 caption). The carbon—oxygen bond in 1 (C3—01
1.326(2) A) is significantly longer than in fluorenone
(1.220(2) A).® A Ni® 1>-0,C-complex of fluorenone has the
same carbon-oxygen bond length (1.326(5) A) as 1.1l

Another salient feature of 1 is the essentially coplanar
arrangement of the two methyl groups and the three atoms of
the copper—carbonyl bond. Specifically, C1 is —0.068 A from
the O1-Cu-C3 plane and C2 is 0.047 A from it. This geometry
represents an approximately 2° clockwise twist of the C1—C2
axis relative to the O1—C3 bond. Therefore, dialkyl cuprate
complexes of double-bonds can be described as pseudo
square-planar, which was originally proposed on the basis of
NMR spectroscopy.”:*!

Also noteworthy is the approximately tetrahedral lithium
atom, bonded to the cuprated carbonyl group as well as three
tetrahydrofuran (THF) ligands. The former lithium-oxygen
bond length is significantly less than the latter bond lengths
(see Figure 1 caption). Lithium methyl(di-tert-butylphosphi-
do)cuprate(I)™ and lithium methyl(phenylthio)cuprate(I)!"!
also have structures in which a lone pair of electrons is
donated from a heteroatom to a (THF);Li* moiety in the solid
state; they can be considered contact ion pairs.”

Rapid-injection NMR involves impelling a substrate so-
lution from a capillary tube into a reagent solution in
a spinning NMR tube, mixing them in a fraction of a second
in the spectrometer probe at a controlled temperature.'”!
Thus, 1 was first prepared by injecting a solution of
fluorenone (60 uL, 0.5M) in [Dg]THF into a solution of
Me,CuLi-LiI (30 umol/420 pL) in [Dg] THF/[D¢]benzene (7:1)
at —100°C. New peaks appeared at 6 = —0.66 and —1.54 ppm
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for the methyl groups in the '"H NMR spectrum of 1 (Figure 2,
>95% conversion after 0.5 h). The corresponding peaks in
the *C NMR spectrum appeared at 6 = —8.40 and 6.04 ppm.
The "C resonance for the carbonyl carbon moved dramati-
cally upfield from 0=193.87 ppm in fluorenone to d=
99.94 ppm in 1.
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Figure 2. "H NMR spectrum of 1 from the rapid injection experiment
at —100°C (residual THF, 6=1.73 and 3.58 ppm). Also present was
a small amount of Me,Culi (0 =—1.44 ppm, compare with Figure 3).

A heteronuclear multiple bond correlation plot (HMBC,
Figure 3, left) has a cross-peak (lower left quadrant) between
the downfield methyl hydrogen atoms (6= —0.66 ppm),
which are assigned to Me,, and the carbonyl carbon (6=
99.94 ppm), which is trans to it. Trans coupling across

copper is typically larger than cis.”™
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Figure 3. 'H-C HMBC (left) and 'H-C HMQC (right) plots for 1 at
—100°C. The minor species in the latter is Me,CuLi (*C NMR,
0=-9.16 ppm, compare with Figure 2; these 2D NMR plots were
from different samples).

A heteronuclear multiple quantum coherence plot
(HMQC, Figure 3, right) has a cross-peak (lower right
quadrant) between the upfield methyl hydrogen atoms (6 =
—1.54 ppm) and the downfield methyl carbon (6 = 6.04 ppm),
which are assigned to Meg. It is highly unusual for the
'H NMR shift of Mej to be the upfield signal.l®)

A possible explanation for the anomalous upfield shift of
Meg is shielding by an aromatic ring current, owing to the
position of this methyl group vis-a-vis the central 5-membered
ring (Figure 1). This aromaticity requires a cyclopentadienyl
anion, which in turn requires the transfer of electron density
from the dimethylcuprate moiety to the cyclopentadiene
substructure, and it implies a significant degree of Cu™
character, as proposed by Nakamura et al.l"

Angew. Chem. Int. Ed. 2013, 52, 10250 -10252

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angewandte
itermationalediion. CHEIMIIE

Complex 1 was stable indefinitely at —100°C, but
decomposed at a significant rate upon warming to —10°C
(t;,=30min) to afford a 9:1 mixture of 1,2-adduct and
ethane, the two possible reductive elimination products.
While they did not observe ethane from the reaction of
Me,CuLi-Lil with fluorenone, House et al. reported reduction
products and the 1,2-adduct.'®!

To recapitulate, fluorenone formed a relatively stable
cuprate—carbonyl st-complex 1 with Me,CuLi, which allowed
us to obtain the first X-ray structure of a cuprate-double-
bond complex. This result supports theoretical calculations,
and most importantly, establishes that such complexes are
viable intermediates.
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